

RHIC BBA Measurement, Analysis & Related Issues

J. Beebe-Wang
J. Ziegler
A. Marusic

RHIC APEX Meeting 4/6/2012

Principle of BBA measurement

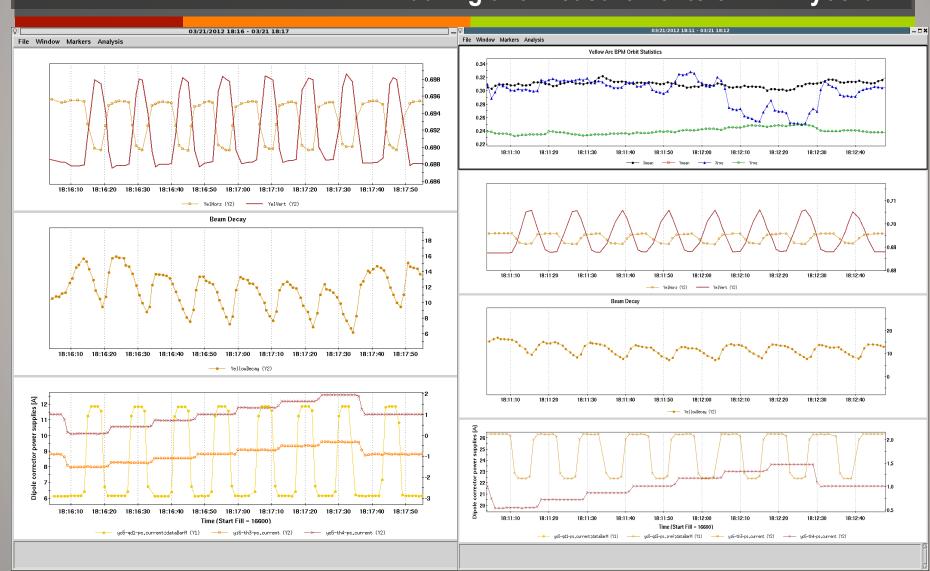
If the closed orbit of beam relative to the magnet center of the i^{th} quad located at s_i is $x(s_i)$, then changing the quadrupole strength k_i by Δk_i gives beam a deflection angle:

$$\theta_i = \frac{\Delta k_i L_i x(s_i)}{1 + 0.5 k_i L_i \beta(s_i) / \tan(\pi v)}$$

where v is the tune in the plane under consideration, $\beta(s_i)$ and L_i are the beta function and length of the quadrupole, The dispersive corrections of o(1%) are neglected.

The transverse orbit displacement at position s due to deflection θ_i is:

$$\Delta x(s) = \frac{\sqrt{\beta(s)}}{2\sin(\pi v)} \sum_{i=1}^{N} \theta_i \sqrt{\beta(s_i)} \cos(|\phi(s) - \phi(s_i)| - \pi v)$$


The objective of BBA is to measure the beam offset $x(s_i)$ by steering the beam and minimizing the measured orbit shift associated with changing the quad strength. Then $x(s_i)$ is used to zero the reading of the BPM near by the quadrupole.

Using $\Delta k_i = 2 \times 10^{-3} \,\text{m}^{-2}$ to avoid large optics, tune, and beam lifetime changes. This is 1.7–2.5% of a typical IR quadrupole strength at RHIC injection.

BBA Measurements (03/21/2012)

during two measurements on BPM yo5-bh1

right fit: m=0.0481, b=-0.0070

BPM:yo5-bh1 Quad:yo5-qd1 intersect:0.2417mm +/- 0.0414mm

BPM Position [mm]

yo5-bh1 log1Q Wed Mar 21 19:05:52 2012 guadTweak:-0.002

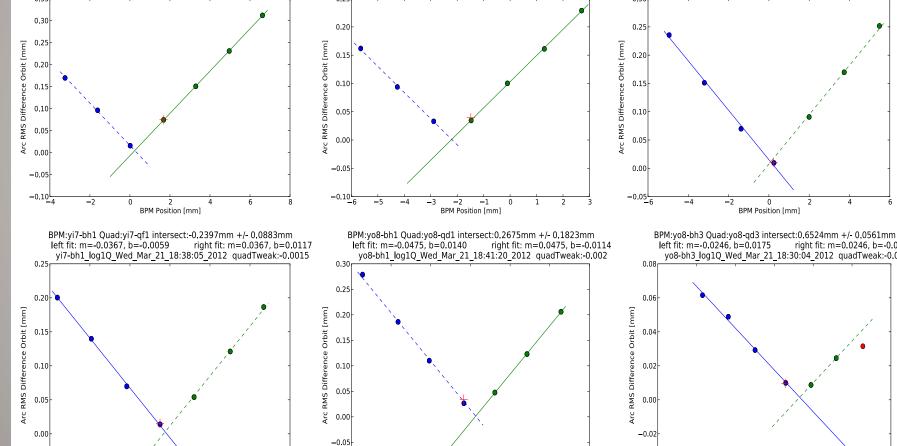
left fit: m=-0.0481, b=0.0162

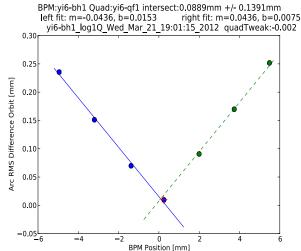
right fit: m=0.0462, b=0.1031

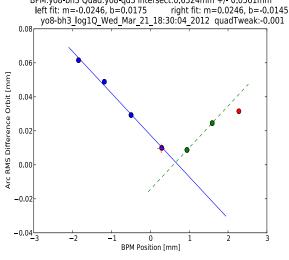
-0.05<u>-</u>6

BBA Analysis of Beam Experiment (03/21/2012)

BPM:yo5-bh3 Quad:yo5-qd3 intersect:-2.2079mm +/- 0.1140mm


0


BPM Position [mm]


yo5-bh3 log1Q Wed Mar 21 19:03:46 2012 guadTweak:-0.002

left fit: m=-0.0462, b=-0.1010

from 1Hz (all arc) BPM reading

Results from the BBA Analysis

from 1Hz BPM reading of all BPMs in all arcs

	3/21/2012		3/3/2010	3/9/2010	3/27/2011
BPM	Center (μm)	Error (μm)	(µm)	(µm)	(µm)
yo5-bh1	242	+-41	220,336	135	125, 206
yo5-bh3	-2208	+-114	-1784	-1866	
yi6-bh1	89	+-139	200	350	
yi7-bh1	-240	+-88	-269	-264	
yo8-bh1	267	+-182		219	
yo8-bh3	652	+-56	457	416	

What we have learned from BBA measurement

- 1. Possible to develop nonconventional procedure to improve the accuracy/speed

 When the machine is reasonably stable BBA measurement can be performed by taking baselines

 (without changing the quad) for all beam-offset locations, then change quad once and take the
 measurement at the same set of offset locations. (It allows us to manipulate the offset in a
 nonconventional fashion in order to improve the accuracy/speed.)
- 2. A step towards streamline measurement: knowledge on measurement parameters

 A careful choice of beam-offset range and the amount of quad strength change in a given lattice
 can improve measurement accuracy without much sacrifice of beam lost. It was found the best
 beam-offset range is [-3.0 3.0]mm with quad strength change of -0.002 on Q1 or Q2 at injection.
- 3. A step towards automatic analysis: data requirement for reliable analysis

 Needs minimum 9 measurement points (4 on positive side and 4 on the negative side) to have confidence of good measurement since a line obtained from fitting 2 or 3 measurement points appears to be unreliable.
- 4. Knowledge on measurement accuracy vs. 1Hz BPM reading settle time

 The 3 seconds waiting time for the 1Hz BPM reading appears to be adequate. But the first/last measurement point (after a big step from/to the original setting) is bad in some of the measurements. The solution could be a 4-5 seconds waiting for the first and the last step.

Issues Related to BBA Measurement in RHIC

Why is BBA Measurement Difficult in RHIC

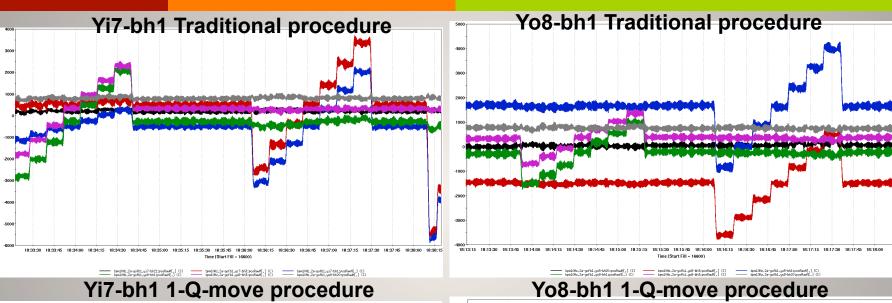
- 1. Limited dipole correctors.
- 2. Very large ring. When all the BPMs in all arcs are used, some BPMs contribute to noise ore than to signal.
- 3. Signal/Noise ratio is low.

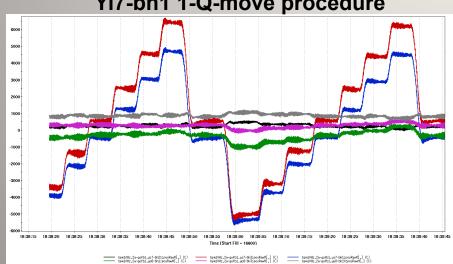
Why is BBA Measurement Difficult in RHIC

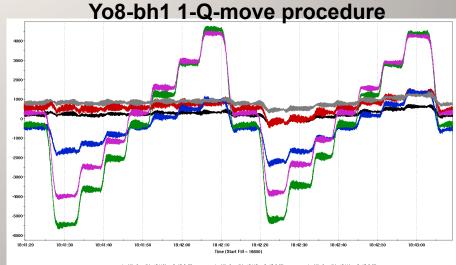
- 1. Step-by-step (faster easier procedure).
- 2. Chose subgroup of BPMs.
- 3. Minimize the frequency of quadrupole change. (Procedure with 1-Q-Move)

RHIC BBA

BBA Measurements (03/21/2012)

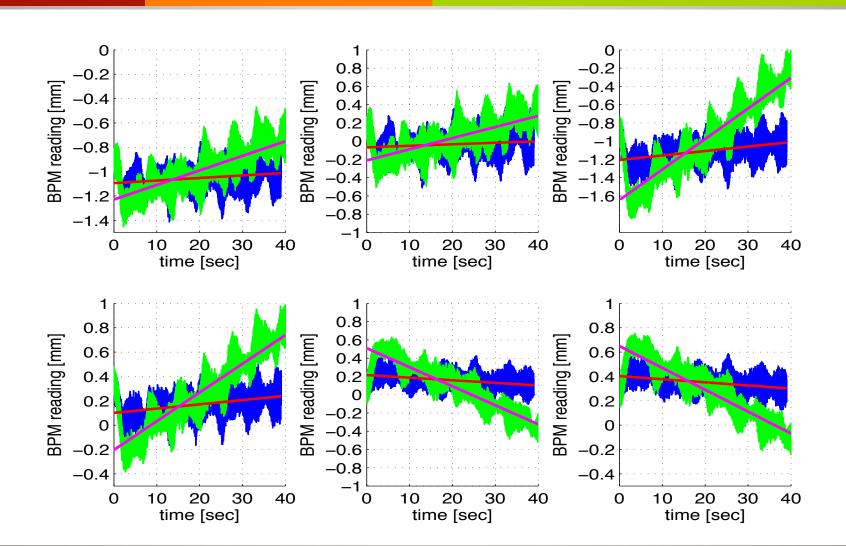

traditional procedure vs. 1-Q-move procedure





Beam Experiment (03/21/2012)

1kHz signals on BPM 1kHz signals on BPM in yi7 & yo8 during yi7-bh1 & yo8-bh1 measurement



Beam Experiment (03/21/2012)

1kHz signals on BPM in yi2, yi3, yo4 during yo5-bh1 measurement

